Bone ingrowth in macroporous Bonelike ® for orthopaedic applications
. Acta BiomaterialiaActa Biomater., 4(2), 370 - 377.
(2008). A method for simultaneously precipitating and dispersing nano-sized calcium phosphate suspensions. Key Engineering MaterialsKey Eng Mat (Vol. 284-286, pp. 67 - 70).
(2005). Method for tailoring and control the morphology, size and porosity of calcium phosphate granules. Key Engineering MaterialsKey Eng Mat (Vol. 284-286, pp. 309 - 312).
(2005). Combining Foaming and Starch Consolidation Methods to Develop Macroporous Hydroxyapatite Implants. ( )Key Engineering MaterialsKey Eng Mat (Vol. 254-256, pp. 1041 - 1044).
(2004). Designing of Bioceramics with Bonelike Structures Tailored for Different Orthopaedic Applications. ( )Key Engineering MaterialsKey Eng Mat (Vol. 254-256, pp. 1037 - 1040).
(2004). Influence of characteristics of the starting hydroxyapatite powders and of deagglomeration procedure, on rheological behaviour of HA suspensions. ( )Materials Science ForumMater Sci Forum (Vol. 455-456, pp. 361 - 365).
(2004). New Method for the Incorporation of Soluble Bioactive Glasses to Reinforce Porous HA Structures. ( )Key Engineering MaterialsKey Eng Mat (Vol. 254-256, pp. 1033 - 1036).
(2004). The Valences of Egg White for Designing Smart Porous Bloceramics: As Foaming and Consolidation Agent. ( )Key Engineering MaterialsKey Eng Mat (Vol. 254-256, pp. 1045 - 1048).
(2004). Porous glass reinforced hydroxyapatite materials produced with different organic additives. Journal of Non-Crystalline SolidsJ Non Cryst Solids, 304(1-3), 286 - 292.
(2002). Production of porous biomaterials based on glass-reinforced hydroxyapatite composites. ( )Key Engineering MaterialsKey Eng Mat (Vol. 230-232, pp. 483 - 486).
(2002).